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The Stokes resistance for a polymer chain 

S. F. EDWARDSt and M. A. OLIVER1 
t Department of Theoretical Physics, University of hIanchester, AIanchester, 
England 
$ School of Mathematical Studies, University of Kent, Canterbury, England 
MS.  receized 16th August 1970 

Abstract. A flexible cylinder in a viscous fluid is used to model a dilute polymer 
solution, with a non-slip boundary condition between the polymer chain surface 
and fluid. The  problem is solved using Green functions and a perturbation 
expansion. The  lowest-order term in the expansion gives for the mean Stokes 
force 

6i~vp~(3nZL)l;~ 

12 
(0 = +(Cr21'1L) 

where ( ~ * / l L ) l ' ~  is the ratio of the cylinder radius to the root-mean-square 
end-to-end distance and the function 9 is given in the text. Our model general- 
izes that of Kirkwood and Riseman by having thickness, and avoids the friction 
coefficient they use. 

1. Introduction 
The Stokes resistance for particles of a variety of geometrical shapes has been 

much studied (Happel and Brenner 1965). I n  this paper we introduce a new geo- 
metrical shape: a cylinder of radius x ,  and whose axis takes a random flight trajectory, 
and the conformation of the axis changes in time due to Brownian motion. The  usual 
non-slip boundary condition for the liquid-cylinder surface is assumed. This model 
is given some respectability as a representation of a macromolecule by a remark of 
Flory's (1953-p. 610). I t  should be noticed that a cylinder with a random flight 
axis is a rather peculiar object, we should rather have an axis which is a smooth curve 
with a maximum curvature of l / x .  The  modification to our analysis is straightforward 
but leads to difficult quadrature. The first approximation to this modification, in a 
small parameter expansion, exists and corresponds to our random flight axis model. 

Our model differs from that of Kirkwood and Riseman (1948-to be referred to 
as K & R) not only in that it is a continuous cylinder rather than a discrete 
chain of beads but more fundamentally in that we make no use of any friction co- 
efficient and also our chain has a definite thickness. Hence, we have to solve a hydro- 
dynamical boundary value problem. 

Physically it is the hydrodynamic interactions between distant parts of the chain 
which give rise to the hydrodynamic properties of polymer solutions, this is why the 
friction coefficient does not appear in the physically significant part of the solution 
of K & R. They obtain for the mean drag on a polymer chain 

X 
( F )  = fy(ZL)1!2V"-  

l + X '  
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5 is the friction coefficient per chain link, E is the link length, L the chain length, 
7 the solvent viscosity and voo the velocity of the solvent relative to the chain far from 
the chain. Since i 2i ql, for long chains x B 1 and 

which is independent of 5. Thus 5 is irrelevant to the problem, and our model has 
the advantage of doing without it. 

I n  a previous paper by Edwards and Papadopoulos (1968) the Stokes resistance 
for a nearly spherical body has been studied. Here we set our problem up in the same 
manner and the reader should see that paper for more detail. 

2. Themodel 
The surface of the cylinder is given by 

r = R(x ,  8) 

where x and 0 are the surface parameters. L is the length of the cylinder along its 
axis and xL gives the distance along the axis from one end, 0 < x < 1. aR(x, O)/ax 

Figure 1 

is the vector tangent to the axis at xL from one end. The  plane perpendicular to 
this is cut by the cylinder in a circle, 8 is the angle subtended by the point on the 
surface (x, 8) from some defined direction, 0 < 8 < 2n (see figure 1). 

The position vector of the axis at x is clearly 

R(x)  = - R(x,O)d8 
257- 0 

so that the equation for the axis is 

r = R(x) .  
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This equation for the axis with the condition for constant radius 

IR(x, e) -R(x) I = a ,  all B 

together define the cylinder with surface S. 
The differential of surface area is 

since the vectors are perpendicular. 
I aRja0 I = u for a cylinder of radius u. I aR/ ax ~ = L for a completely inextensible 

chain; for the measure we use in averaging over chain conformations, Weiner measure, 
this is not strictly true and we should leave d S  as a function of /aR/ax\ .  However, 
an expansion about the value L can be made though we shall follow previous work 
using Weiner measure and simply take the first term in this expansion. Thus we 
shall take 

dS  = aL dB dx. (2.1) 

R(x) will be treated as a stochastic variable, its distribution will be taken to be 
the Weiner measure with the centroid of the chain at the origin, 

W[R(x)] = JV exp 

IL is the mean square end-to-end distance of the chain. Thus the axis takes up random 
flight conformations. Averages will be indicated by angular brackets. 

Using this measure to obtain ensemble averages over all possible random flight 
conformations should give a good representation of the Brownian motion of the chain 
at the theta temperature since 

(i) The  theta temperature is defined as that at which random flight statistics 
are a good representation of flexible macromolecule conformation statistics. 

(ii) By the ergodic hypothesis, the average over all available conformations (on 
the appropriate time-scale) should simulate the thermal motion of the chain. 

(iii) Though one chain will not have available to it all random flight conformations, 
because in some approximate sense its topology will be fixed (how much depends on 
the time-scale), experimentally one has a system with many chains which means one 
is averaging over topologies. Thus the measure W[R(x)] is an appropriate one. 

The  object of this paper is to solve Stokes’ equations 

?AV - vp = 0 

v . v = o  
with the boundary conditions 

v(R(x,  8)) = 0, all (x, 0) 
and, at infinity 

lim v(r)r+w = vm.  
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The Stokes resistance is obtained from the solution as 

F = [ - p 1 + v ( V v + ( V v ) + } ] .  d S  (2.3) 
S R  

where 1 is the unit tensor, ( )+ indicates transposition, the surface S ,  is a sphere of 
radius R drawn around the origin and enclosing the chain. For details see Landau 
and Lifshitz (1959). The mean Stokes resistance is obtained by averaging (2.3) using 
the measure W[R(x)],  as this is spherically symmetric the friction tensor will be 
isotropic and the mean force will be along v m .  

3. The solution of Stokes' equations 
In  this section we shall generalize the boundary condition at infinity to 

lim v(r )r+m = v"(r).  (3.1) 
To ease the handling of the boundary conditions on the chain surface Lagrange 

multipliers are used (Edwards and Papadopoulos 1968). Stokes' equations are modi- 
fied to 

T A ~  - v p  + j g(x, e ) 6 p q x ,  e) - r> d s  = o (3 -2) 

V . V = O  (3.3) 

S 

where [g(x, e)] will be chosen to satisfy the surface boundary condition (2.2). 

The Green function is well known and one obtains 
Take the divergence of (3.2) and use (3.3) to obtain an equation for the pressure. 

where p"(r)  is the pressure at infinity, and for brevity we write U for the pair 
(x, 19). Substituting (3.4) in (3.2) gives an equation for the velocity which is solved in 
the same manner. The  solution is 

v(r) = v"(r) K ( r  -R(u)} . g(u) d S  (3.5) 
where 

r21 + rr 
K ( r )  = -. 

2 r 3  

The Lagrange multipliers [g(u)] are obtained by applying the boundary conditions 
(2.2). 

(3.6) 0 = v"{R(u' ) }+-  1 K(R(o ' )  - R ( o ) )  .{(U) dS.  
4777 s 

It is now assumed that the inverse to K{R(o')-R(a)) exists, it is defined by 

/ ,K-'( .",  U'),  K ( R ( u ' ) - R ( u ) } ~ S '  = 16(0"-0) 
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where 8(0"- U) is an appropriately defined delta function. Clearly, from the defini- 
tion of K( r) ,  

K-'"'', a) = K-'(u, a"). 

Multiply (3.6) by K-l(a", a') and integrate over U', then 

E(.) = -hq K-'(U, a ') .  v"{R(a')}dS', I, 
Substituting this back in (3.4) and (3.5) gives 

o(r)  = v m ( r )  - Js d S  1 dS'K{r -R(o ' ) }  . K - l ( o ' ,  U) . v"{R(a))  (3.7) 
S 

and 

4. Application to the Stokes resistance problem 
The solutions (3.7) and (3.8) for the velocity and pressure fields are appropriate 

to the Stokes resistance problem if in (3.1) v"(r)  = U", a constant vector, and 
p"(r)  = p" ,  a constant. These solutions inserted in (2.3) give the drag on the chain 
for the chain conformation [R(o) ] .  Equation (2.3) holds for arbitrary R, provided the 
sphere encloses the chain, therefore only terms of order l / r  in the velocity and l /r2 in 
the pressure contribute to the integral. From (3.7) and (3.8) we have 

dS'K-'(a, U') . V" + O ( Y - ~ )  J, dS J, v ( r )  = v m - K ( r ) .  

p ( r )  = p " - q ; . I s d S J  d S ' K - l ( a , d )  . ~ " + o ( r - ~ ) .  
S 

Using the symmetry of K - l  we can write (2.3) as 

Define the friction tensor Q by 

F = Q . v "  
then 

Q = 4x71 Is dS J' dS'K-l(U,  U') 

S 

which is a functional of [R(u)] .  

in 5 2. Thus 
The mean drag is simply F in (4.1) averaged over all conformations as described 

( F )  = (Q) * v" .  (4.2) 
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Since d S  is not a function of R(x ,  0) in our approximation, equation (2.1), we have 

(J’, d S / ,  dS’K-l(a ,  U’)) = d S  dS’(K-l(a ,  a’)} s, J’, 
and the problem is reduced to obtaining 

(9) = k y / , d S /  dS’(K-l(o, a’)). (4.3) 
S 

5.  An expansion €or K - l  

mean (K{R(  a) - l?(u’)}}-l. Write 
In order to obtain an expression for ( K - l )  we shall make an expansion about the 

K{R(a)-R(a’)) = (K{R(a)-R(u’)})- V(a, a’) 

which defines V .  I t  is convenient to write 

(K(R(u)-R(u’)}) i~ Q-’(a, 0’) 
then 

K-’(a, U’) = Q(a, a’)+ 1, dS” 1, dS”’Q(o, a’’) . V(U”, U”‘) . K - l ( ~ i ’ f ,  U’) (5 .1)  

where K - l  is, of course, a functional of [R(a)], Q is defined by 

dS”Q(a, U”) , Q-l(a”, a’) = B(a- a‘) ( 5  4 L 
which is analogous to the defining equation for K - l .  Equation (5.1), when iterated, 
gives an expansion for K-I in V .  

Q-I is evaluated in Appendix 1 and is given by (A1.4): 

Q-’(a, U’) = I Erf(u) du 

where 

This is substituted in (5.2) and since 

y / x  = (ZL/12cC2)1’21x-x’ll’2, h 3 (12X2/lL)112. 

/S (u -  a’) dS‘ = 1 

and d S  = X L  dB dx we write 

( 2 7 r ~ L ) ~  J dx”Q(x, x”)Q-’(x’’, x’) = S(x - x’) 
0 

where Q has been written as QI. 

of a Fourier series. g is the periodic extension of Q, and 
This equation is solved in Appendix 2 where the solution is obtained in the form 

CO 

g(x-x”) = 2 fil exp(2rrim(x-x”)) 
m = - m  

with the coefficients given in (A2.2). 
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When (5.1) is iterated we obtain, schematically, 

K-’  = Q+Q . V .  Q+Q . V .  Q . V .  Q +  ... . 
It is the mean of this that is required. From the properties already given of the 
quantities on the right hand side we have 

( K - ’ }  = IQ+O(V2) 
Integrating (IC-’) and inserting in (4.3) the mean of the friction tensor is 

{a) = d S 1  dS’(K-l(U, U’)) 
S S 

50 

= I(4nqJ: da  I ’d%‘  2 fi’ exp{2~rim(x-x’)} + O(ya!) 

= I{47r7&1+ O( V”). (5.3) 
0 m=-oo  

6. Conclusions 
From (4.2) and (5.3) we have 

( F )  = 4n7f; l (X)~~ + O ( V 2 ) .  
Since our model has meaning only for X 9 1, f ; ’ ( X )  can be expanded, from (A2.3) 

(3nZL)”2( 4 ~ ( ” ) ” ~  477-6 x2 

12 3 1L 3 1L ( F )  = 6 ~ 7 7 ~ ~  1 +- - +- -+ ...I+ O(V2) .  (6.1) 

It should be noticed that O( V 2 )  contains correction terms of all orders in A, so that 
we are unable to estimate the accuracy of (6.1). The correction terms are not difficult 
to evaluate in as much as they present functional problems, but the resulting functions 
give exceedingly complicated integrals. 

The  ratio of the first term in (6.1) to the result of K & R quoted in (1.2) is 23’2 : 3, 
that is approximately 0.95. 

The  form of our result differs from that of K & R (1.1). The  reason for this is 
that we have treated the diagonal terms of K on an equal footing with the off-diagonal 
terms, whereas K & R treat them unequally. They account for the intrachain inter- 
actions using the formula of Oseen (their T ,  our K )  as we do, but whereas we also 
use this to account for the diagonal terms they introduce a friction coefficient to avoid 
this. The  same formulae result for the reasons stated in $ 1 .  The method of this 
paper can therefore claim to be more consistent as there is no reason for treating the 
diagonal terms as special since the singularity in ( K )  (see (A1.4)) goes like jx-x’/ 
and can be easily dealt with. 
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Appendix 1. Evaluation of ( K )  
Notice that 1 d3q1q2-qq exp[- iq .  (R(o ) -R(a ’ ) ) ]  (Al.1) 

1 
K{R(U) - R( U’)) = - 

2T2 q4 
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and write 

exp[ - iq . {R(cr) -R(u’)}] = exp[ - iq . {R(x )  -R(x’)}]  
x exp[ - iq . {R(a)  - R(x) } ]  exp[iq . (R(o’) - R(x’)}]. 

(hl.2) 
Thus finding the mean of K can be reduced to finding the mean of (A1.2). 

We perform the average over all chain conformations in two parts. First keeping 
R(x)  and R(x’) fixed we average over all possible remaining conformations. Secondly 
we average over all possible R ( x )  and R(x’ ) ,  subject only to the centre of mass of the 
chain being held at the origin. 

Consider (A1.2) and the first part of the averaging. The vectors R(a)-R(x)  and 
R(a’) - R(x’) both have magnitude z and are uncorrelated in direction as may be seen 
by inspection of the measure W[R(a)]. Thus, on averaging, each takes up all possible 
directions with equal weight; write a(L2) = R(o)-R(x) ,  then 

1 1 sin xq 
- f dL2 exp{ - iq . a(Q)} = 4 f d(cos 0) exp{ - iqcc cos e> = 
477- -1 “Q 

Hence we have for the first part of the averaging for (Al.2) 

(A1 .3) 7 

where r and r‘ are the fixed values of R(x)  and R(x’) .  

R(x’) at r’ is required. This is 
For the second part of the averaging, the probability for finding R(x)  at r and 

p(r, r ’ )  = 1 S[R(x)]S{r -R(x)}G(r’ -R(x ’ ) }W[R(x) ] .  

Thus 

(exp[-iq.{R(a)-R(a’)}]) = i”;:,“‘)!’ - f d3r f d3r’p(r, r ’ )  exp(- iq . ( r  - r‘)} 

x SCR(x>l. 

This functional integral is evaluated by expanding R(x)  in a Fourier series 

m 

R(x) = R,cosnm.  
n = O  

03 3nn2 3 , z  3n2n2 
Then 

~ c R ( ~ > I  = K R ~ )  n = l  n (E) exp(- 

(exp[ - iq . (R(a)  -R(u’)}] > = riz;‘) -- exp( - y2q2) 

i R n l 2 )  

and hence 

where y2 E -&gZL [ x - x’ I. 
t We wish to acknowledge the assistance of Dr Dal-ies in obtaining this result. 
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Combining this with (Al.1) and performing the angular part of the integration 

Write the sine factor in terms of Bessel functions using 

sin2xq nu ___- - z Jl,Z(XP) 
4 

then 

( K { R ( o ) - R ( u ’ ) } )  = Iicr-l dqq-1J:,2(uq) exp( -y2q2) 

3 d ( 1 , P , I > Z > P >  9 Q ir - - &.-1:2y-1 Fr 3 1.3 3 2. - 2 2 

i: 
from Erdilyi (1953-$7.7(21)). Writing the expansion for 3F3 this is easily seen 
to be 

from which by a change of variable we obtain 
ai Y 

~ ~ K { R ( a ) - R ( u ’ ) } )  = Q-’(x, x’) = I $ ( y / x 2 )  Erf(u) du. (Al.4) 
0 

Appendix 2. Evaluation of Q 
W e  have to solve 

( 2 ~ c t L ) ~  1: dx Q ( x - ~ ” ) Q - ~ ( x ” - x ’ )  = 6(x-x’) 

for $3) Q-’ = IQ-l is given in equation (A1.4). This equation is to be interpreted in 
terms of generalized functions (see Lighthill 1958). 

Define the periodic extensions of Q-l and Q as f and g respectively, then we have 
to solve 

( 2 ~ x L ) ~  Im dx’~(x-x”)g(x”-x’)U(x’’-&) = 2 6(x-x‘-k) (A2.1) 
m 

- m  k = - c c  

where U(x)  is the unitary function. 
Sow expand f and g in Fourier series 

3) 

f ( x - x ” )  = 2 f n  exp{Zrrin(x-x”)} 

g(x”-x’) = 2 g, exp{2xim(x”-x’)}. 

n = - a  
W 

m=--33 

Substituting in (A2.1) and integrating leads to 

therefore 
(2rxL)2f,gn = 1 
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with 

S. F. Edwards and M .  A. Oliver 

fm = Im f ( x ) U ( x )  exp( -27rimx) dx 

1 Erf(u)du (A2.2) = - 1 dx x112 exp( - 27rimx) 

-a 

,Uz11z 2 1  

3xu 0 0 

where A/x1I2 E ~ / y .  In particular 

Expanding we have 
4x 

3urr1'2 
jo(x) = - (1 - 

hence 
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